Overview 2015

Enlarged view: Peak power versus repetition rate
Peak power versus repetition rate
Enlarged view: Pulse energy versus repetition rate
Pulse energy versus repetition rate
Enlarged view: Pulse duration versus repetition rate
Pulse duration versus repetition rate
Enlarged view: Overview table
Overview table, state of the art Ti:sapphire and fiber lasers are shown for comparison (frep: repetition rate, τp: pulse duration, Pav: average output power, Ep: pulse energy, P0: peak power and λ0: center wavelength. Publications by the group of Prof. U. Keller are highlighted in red. *estimated from the optical spectrum, no autocorrelation was provided)

References

  1. D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Optics Express 19, 18440-18451 (2011).
  2. A. Bartels, R. Gebs, M. S. Kirchner, and S. A. Diddams, “Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser,” Opt. Lett. 32, 2553-2555 (2007).
  3. A. Bartels, T. Dekorsky, and H. Kurz, “Femtosecond Ti:sapphire ring laser with 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24, 996-998 (1999).
  4. S.-W. Chu, T.-M. Liu, C.-K. Sun, C.-Y. Lin, and H.-J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express 11, 933-938 (2003).
  5. T. M. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons,” Opt. Lett. 31, 1011-1013 (2006).
  6. I. Hartl, H. A. McKay, R. Thapa, B. K. Thomas, J. Dong, and M. E. Ferman, “GHz Yb-femtosecond-fiber laser frequency comb,” in Conference on Lasers and Electro-Optics (CLEO)(San Jose, CA, 2009).
  7. D. Chao, M. Y. Sander, G. Chang, J. L. Morse, J. A. Cox, and G. S. Petrich, “Self-referenced Erbium Fiber Laser Frequency Comb at a GHz Repetition Rate,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference(2012).
  8. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37, 3522-3524 (2012).
  9. A. Martinez, and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express. 19, 6155-6163 (2011).
  10. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz Pulsed Fiber Fabry–Pérot Laser Mode-Locked Using Carbon Nanotubes,” Ieee Photonics Technology Letters 17, 750-752 (2005).
  11. A. Martinez, and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012).
  12. A. Klenner, M. Golling, and U. Keller, “Compact gigahertz frequency combs,” in Advanced Solid-State Lasers (ASSL)(Paris, France, 2013), p. invited talk
  13. [370] A. Klenner, M. Golling, and U. Keller, “High peak power gigahertz Yb:CALGO laser,” Opt. Express. 22, 11884-11891 (2014). DownloadDownload (PDF, 1.8 MB)
  14. A. Klenner, M. Golling, and U. Keller, “Gigahertz diode-pumped Yb:CALGO laser with 60-fs pulses and an average output power of 3.5 W,” in Conference on Lasers and Electro-Optics (CLEO)(San Jose, California USA, 2014), p. oral presentation (SM4F).
  15. [387] A. Klenner, and U. Keller, “All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers,” Opt. Express 23, 8532-8544 (2015). DownloadDownload (PDF, 1.4 MB)
  16. P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17, 5630-5635 (2009).
  17. T. C. Schratwieser, C. G. Leburn, and D. T. Reid, “Highly efficient 1 GHz repetition-frequency femtosecond Yb3:KY(WO4)2 laser,” Opt. Lett. 37, 1133-1135 (2012).
  18. [302] S. Pekarek, C. Fiebig, M. C. Stumpf, A. E. H. Oehler, K. Paschke, G. Erbert, T. Südmeyer, and U. Keller, “Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9 kW,” Opt. Express 18,16320-16326 (2010). DownloadDownload (PDF, 956 KB)
  19. [315] S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a gigahertz diode-pumped solid state laser,” Opt. Express 19, 16491-16497 (2011). DownloadDownload (PDF, 1023 KB)
  20. [346] A. Klenner, M. Golling, and U. Keller, “A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal,” Opt. Express. 21, 10351-10356 (2013). DownloadDownload (PDF, 1.8 MB)
  21. S. Pekarek, M. C. Stumpf, S. Lecomte, S. Kundermann, A. Klenner, T. Südmeyer, J. M. Dudley, and U. Keller, “Compact gigahertz frequency comb generation: how short do the pulses need to be?,” in ASSP 2012(San Diego, California, USA, 2012), p. AT5A.2. DownloadAbstract (PDF, 1.7 MB)
  22. S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett. 35, 748-750 (2010).
  23. M. Endo, A. Ozawa, and Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express 20, 12191-12196 (2012).
  24. [325] S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20, 4248-4253 (2012). DownloadDownload (PDF, 847 KB)
  25. M. Endo, A. Ozawa, and Y. Kobayashi, “6-GHz, Kerr-lens mode-locked Yb:Lu2O3 ceramic laser for comb-resolved broadband spectroscopy,” Optics Letters 38, 4502-4505 (2013).
  26. M. Endo, I. Ito, and Y. Kobayashi, “Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y2O3 ceramic laser,” Opt. Express 23, 1276-1282 (2015).
  27. [174] L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331-1338 (2002). DownloadDownload (PDF, 238 KB)
  28. [109] L. Krainer, R. Paschotta, J. Aus der Au, C. Hönninger, U. Keller, M. Moser, D. Kopf, and K. J. Weingarten, “Passively mode-locked Nd:YVO4 laser with up to 13 GHz repetition rate,” Appl. Phys. B 69, 245-247 (1999). DownloadDownload (PDF, 198 KB)
  29. [213] S. Lecomte, M. Kalisch, L. Krainer, G. J. Spühler, R. Paschotta, L. Krainer, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate, IEEE J. Quantum Electron. 41, 45-52 (2005). DownloadDownload (PDF, 765 KB)
  30. [296] A. E. H. Oehler, M. C. Stumpf, S. Pekarek, T. Südmeyer, K. J. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99, 53-62 (2010). DownloadDownload (PDF, 902 KB)
  31. [181] G. J. Spühler, P. S. Golding, L. Krainer, I. J. Kilburn, P. A. Crosby, M. Brownell, K. J. Weingarten, R. Paschotta, M. Haiml, R. Grange, and U. Keller, “Multi-wavelength source with 25-GHz channel spacing tunable over the C-band,” Electron. Lett. 39, 778-780 (2003). DownloadDownload (PDF, 839 KB)
  32. [184] S. C. Zeller, L. Krainer, G. J. Spühler, K. J. Weingarten, R. Paschotta, and U. Keller, “Passively modelocked 40-GHz Er:Yb:glass laser,” Appl. Phys. B 76, 1181-1182 (2003). DownloadDownload (PDF, 75 KB)
  33. [201] S. C. Zeller, L. Krainer, G. J. Spühler, R. Paschotta, M. Golling, D. Ebling, K. J. Weingarten, and U. Keller, “Passively mode-locked 50-GHz Er:Yb:glass laser,” Electron. Lett. 40, 875-876 (2004). DownloadDownload (PDF, 214 KB)
  34. [258] S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, “Passively modelocked 77 GHz Er:Yb:glass laser,” Electron. Lett. 43, 32-33 (2007). DownloadDownload (PDF, 126 KB)
  35. [281] A. E. H. Oehler, T. Südmeyer, K. J. Weingarten, and U. Keller, “100 GHz passively mode-locked Er:Yb:glass laser at 1.5 µm with 1.6-ps pulses,” Opt. Express 16, 21930-21935 (2008). DownloadDownload (PDF, 839 KB)
  36. D. Li, U. Demirbas, J. R. Birge, G. S. Petrich, L. A. Kolodziejski, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power,” Opt. Lett. 35, 1446-1448 (2010).
  37. K. G. Wilcox, Z. Mihoubi, G. J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D. A. Ritchie, and A. Tropper, “Ultrafast optical Stark mode-locked semiconductor laser,” Optics Letters 33, 2797-2799 (2008).
  38. K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High Peak Power Femtosecond Pulse Passively Mode-Locked Vertical-External-Cavity Surface-Emitting Laser,” Photonics Technology Letters, IEEE 22, 1021-1023 (2010).
  39. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power,” Appl. Phys. Lett. 80, 3892-3894 (2002).
  40. M. Scheller, T. L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1W of average output power,” Electronics Letters 48, 588-589 (2012).
  41. [371] C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referencable frequency comb from a semiconductor disk laser,” Opt. Express. 22, 16445-16455 (2014). DownloadDownload (PDF, 2.8 MB)
  42. D. Waldburger, M. Mangold, S. M. Link, M. Golling, E. Gini, B. W. Tilma, and U. Keller, “Sub-300-femtosecond Semiconductor Disk Lasers,” in Conference on Lasers and Electro-Optics (CLEO)(2015).XXXX
  43. [146] R. Häring, R. Paschotta, E. Gini, F. Morier-Genoud, H. Melchior, D. Martin, and U. Keller, “Picosecond surface-emitting semiconductor laser with >200 mW average power,” Electron. Lett. 37, 766-767 (2001). DownloadDownload (PDF, 94 KB)
  44. Y. F. Chen, Y. C. Lee, H. C. Liang, K. Y. Lin, K. W. Su, and K. F. Huang, “Femtosecond high-power spontaneous mode-locked operation in vertical-external cavity surface-emitting laser with gigahertz oscillation,” Opt. Lett. 36, 4581-4583 (2011).
  45. H. Hoffmann, O. D. Sieber, W. P. Pallmann, V. J. Wittwer, Y. Barbarin, T. Südmeyer, and U. Keller, “All Quantum-Dot Based Femtosecond VECSEL,” in 4th EPS-QEOD Europhoton Conference, Hamburg , Aug. 29 – Sept. 3(2010). DownloadAbstract (PDF, 85 KB)
  46. [276] M. Hoffmann, Y. Barbarin, D. J. H. C. Maas, M. Golling, I. L. Krestnikov, S. S. Mikhrin, A. R. Kovsh, T. Südmeyer, and U. Keller, “Modelocked quantum dot vertical external cavity surface emitting laser,” Appl. Phys. B 93, 733-736 (2008). DownloadDownload (PDF, 291 KB)
  47. C. R. Head, H.-Y. Chan, J. S. Feehan, D. P. Shepherd, S.-u. Alam, A. C. Tropper, J. H. V. Price, and K. G. Wilcox, “Supercontinuum Generation With GHz Repetition Rate Femtosecond-Pulse Fiber-Amplified VECSELs,” Ieee Photonics Technology Letters 25, 464-467 (2013).
  48. P. Klopp, F. Saas, M. Zorn, M. Weyers, and U. Griebner, “290-fs pulses from a semiconductor disk laser,” Opt. Express 16, 5770-5775 (2008).
  49. P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, and G. Ebert, “Mode-Locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier,” Opt. Express 17, 10820-10834 (2009).
  50. [219] A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, “2.1-W picosecond passively mode-locked external-cavity semiconductor laser,” Opt. Lett. 30, 272-274 (2005). DownloadDownload (PDF, 644 KB)
  51. S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1135-1138 (2000).
  52. [312] M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Optics Express 19, 8108-8116 (2011). DownloadDownload (PDF, 1.5 MB)
  53. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Applied Physics Letters 98, 071103-071103 (2011).
  54. D. S. Oliver, H. Martin, J. W. Valentin, W. P. Pallmann, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, M. Golling, Y. Barbarin, T. Südmeyer, and K. Ursula, “Femtosecond VECSELs with up to 1-W Average Output Power,” in CLEO: Science and Innovations (CLEO: S and I)(Baltimore, Maryland, 2011). DownloadAbstract (PDF, 340 KB)
  55. [172] R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38, 1268-1275 (2002) DownloadDownload (PDF, 290 KB)
  56. [319] O. D. Sieber, V. J. Wittwer, M. Mangold, M. Hoffmann, M. Golling, T. S¸dmeyer, and U. Keller, “Femtosecond VECSEL with tunable multi-gigahertz repetition rate,” Opt. Express 19, 23538-23543 (2011). DownloadDownload (PDF, 1.1 MB)
  57. D. S. Oliver, J. W. Valentin, H. Martin, I. L. Krestnikov, S. S. Mikhrin, D. A. Livshits, M. Golling, S. Thomas, and K. Ursula, “High-average power femtosecond VECSELs with tunable repetition rates up to 10 GHz,” in Photonics West(San Francisco, California, 2012).
  58. A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, “10-GHz passively mode-locked surface emitting semiconductor laser with 1.4-W average output power,” Appl. Phys. Lett. 86, 131102 (2005).
  59. B. Rudin, D. J. H. C. Maas, D. Lorenser, A.-R. Bellancourt, H. J. Unold, and U. Keller, “High-Performance Mode-Locking with up to 50 GHz Repetition Rate from Integrable VECSELs,” in Conference on Lasers and Electro-Optics (CLEO)(Long Beach, California, USA, 2006). DownloadAbstract (PDF, 88 KB)
  60. [252] D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, “50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power,” IEEE J. Quantum Electron. 42, 838-847 (2006). DownloadDownload (PDF, 1.9 MB)
  61. B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18, 27582-27588 (2010). DownloadAbstract (PDF, 1.9 MB)
  62. [265] D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88, 493-497 (2007). DownloadDownload (PDF, 357 KB)
  63. [283] A.-R. Bellancourt, D. J. H. C. Maas, B. Rudin, M. Golling, T. Südmeyer, and U. Keller, “Modelocked Integrated External-Cavity Surface Emitting Laser (MIXSEL),” IET Optoelectronics Vol. 3, pp. 61-72 (2009). DownloadDownload (PDF, 768 KB)
  64. B. Rudin, J. W. Valentin, J. H. C. M. Deran, B. Yohan, G. Matthias, S. Thomas, and K. Ursula, “Modelocked Integrated External-Cavity Surface Emitting Laser (MIXSEL) with output power up to 660 mW and repetition rate up to 10 GHz,” in Conference on Lasers and Electro-Optics (CLEO)(San Jose, CA, 2010). DownloadAbstract (PDF, 410 KB)
  65. J. W. Valentin, R. Benjamin, J. H. C. M. Deran, H. Martin, D. S. Oliver, B. Yohan, G. Matthias, S. Thomas, and K. Ursula, “10-GHz MIXSEL: An Integrated Ultrafast Semiconductor Disk Laser with 2.2 W Average Power,” in CLEO: Science and Innovations (CLEO: S and I)(Baltimore, Maryland, 2011). DownloadAbstract (PDF, 487 KB)
  66. [335] V. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Sudmeyer, and U. Keller, “High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation,” Electron. Lett. 48, 1144-1145 (2012). DownloadDownload (PDF, 212 KB)
  67. [357] M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL),” Opt. Express. 21, 24904-24911 (2013). DownloadDownload (PDF, 3.3 MB)
  68. [367] M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 GHz to 100 GHz with a high-power semiconductor disk laser,” Opt. Express. 22, 6099-6107 (2014). DownloadDownload (PDF, 2.4 MB)
JavaScript has been disabled in your browser